## Autumn I: The Animal Kingdom

| Week | Unit | National Curriculum objectives Possible lesson objectives | White Rose Maths (WRM) 'small steps' | Models and images representing number Key vocabulary | Reasoning (in addition to WRM questions) | Fluency |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Warm-Up Week <br> Counting forwards and backwards to/from 100 |  |  |  |  |  |
| 2 | Number <br> Place value to 100 |  |  |  |  |  |
|  | - recognis digit num <br> - identify, different <br> WALT cou WALT cou WALT rec WALT use WALT par | ace value of each digit in a two- <br> t and estimate numbers using ntations <br> and write numbers to 20 <br> 00 by making 10 s <br> Os and Is <br> value chart <br> umbers into 10 s and Is | - Numbers to 20 <br> - Counting objects to 100 by making IOs <br> - Recognise IOs and Is <br> - Use a place value chart <br> - Partition numbers to 100 | Number track, ten frame, counters, cubes, Rekenrek, base-I0, partwhole model Introduce Place value chart <br> Digit, numeral, twenty-one, twenty-two (and so on up to), ninety-nine, one hundred, place value, step counting, <br> > as 'greater than', < as 'less than', partition, place holder, place value | Odd one out <br> Which is the odd one out - 445455 ? Explain your answer, then find a different odd one out NRICH 100 Square Jigsaw (a lot of prep!) NRICH That Number Square! | Mastering Number |
| 3 | - recognis digit num <br> - identify, different line <br> - read and <br> WALT rea WALT par WALT wr WALT find line | ace value of each digit in a two- <br> nt and estimate numbers using ntations, including the number <br> umbers to at least 100 in words <br> rite numbers in words umbers in different ways ers in an expanded form ark 10 s numbers on a number | - Write numbers to 100 in words <br> - Flexibly partition numbers to 100 <br> - Write numbers to 100 in expanded form <br> - I0s on the number line to 100 <br> - IOs and Is on the number line to 100 | Part-whole model, ten frame, counters, base-I0, Rekenrek, partly-empty number line <br> Digit, numeral, twenty-one, twenty-two (and so on up to), ninety-nine, one hundred, place value, step counting, <br> > as 'greater than', <as 'less than', partition, place holder, place value | Make up an example <br> Create numbers where the units digit is one less than the tens digit. What is the largest/smallest number? <br> NRICH 6 Beads <br> NRICH Two-digit Targets <br> NRICH Snail One Hundred | Mastering Number |


|  | WALT find and mark any number on a number line |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | - identify, represent and estimate numbers using different representations, including the number line <br> - compare and order numbers from 0 up to 100 ; use <, > and = signs <br> - use place value and number facts to solve problems <br> WALT estimate where a number is on a number line <br> WALT compare groups of objects <br> WALT compare numbers <br> WAP using the < and > signs to compare numbers <br> WALT put groups of objects and numbers in order | - Estimate numbers on a number line <br> - Compare objects <br> - Compare numbers <br> - Order objects and numbers | Partly-empty and printed number lines, ten frame, base-IO, counters <br> Digit, numeral, twenty-one, twenty-two (and so on up to), ninety-nine, one hundred, place value, step counting, <br> > as 'greater than', < as 'less than', partition, place holder, place value, estimate | Convince me <br> What is the largest difference you can find between two 2-digit numbers that use the same digits? The smallest? Convince me... | Mastering Number |
| 5 | - count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward and backward <br> - compare and order numbers from 0 up to 100; use <, > and = signs <br> WAP counting in 2 s and 10 s <br> WAP counting in 5 s <br> WALT count in IOs from any number <br> WALT count in 3 s <br> WAP counting in 3 s | - Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s <br> - Count in 3 s | Ten frame, counters, Rekenrek, base-IO, number track, printed number lines <br> Digit, numeral, twenty-one, twenty-two (and so on up to), ninety-nine, one hundred, place value, step counting, <br> > as 'greater than', < as 'less than', partition, place holder, place value, estimate | Spot the mistake: <br> 45,40,35,25 <br> What is wrong with this sequence of numbers? <br> True or False? <br> I start at 3 and count in threes. I will say 13. <br> NRICH 5 Steps to 50 <br> NRICH Domino Sequences <br> NRICH Domino Number Patterns <br> NRICH Light the Lights | Mastering Number |
| 6 | Number Calculation: Addition and subtraction (I) |  |  |  |  |
|  | - solve problems with addition and subtraction <br> - recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 <br> WAP number bonds to 10 WALT use fact families to help find addition and subtraction bonds <br> WAP addition and subtraction bonds to 20 <br> WALT use known facts to find related ones <br> WALT use related facts to find bonds to 100 | - Bonds to 10 <br> - Fact families addition and subtraction bonds within 20 <br> - Related facts <br> - Bonds to 100 (IOs) | Ten frame, cubes, counters, Rekenrek, base-10, 100 square <br> Digit, numeral, twenty-one, twenty-two (and so on up to), ninety-nine, one hundred, place value, step counting, > as 'greater than', | Continue the pattern $\begin{aligned} & 90=100-10 \\ & 80=100-20 \end{aligned}$ <br> Can you make up a similar pattern starting with the numbers 74, 26 and I00? <br> What's the same, what's different (fact families) | Mastering Number |


|  |  |  | < as 'less than', partition, place holder, place value, estimate |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | - solve problems with addition and subtraction <br> - add a 2-digit number and ones <br> - add three I-digit numbers <br> WALT add and subtract ones <br> WALT add by using bonds to 10 <br> WALT add three I-digit numbers <br> WALT add to make the next IOs numbers <br> WALT add by bridging through 10 | - Add and subtract Is <br> - Add by making 10 <br> - Add three I-digit number <br> - Add to the next 10 <br> - Add across a 10 | Ten frame, counters, Rekenrek, part-whole model, partly-empty and printed number lines, base-IO <br> Digit, numeral, twenty-one, twenty-two (and so on up to), ninety-nine, one hundred, place value, step counting, > as 'greater than', < as 'less than', partition, place holder, place value, estimate, commutative | Other possibilities $\qquad$ $\qquad$ $\qquad$ $=14$ <br> $\overline{\text { What single digit numbers could go in the boxes? How }}$ many different ways can you do this? <br> NRICH Strike It Out <br> NRICH What Was In the Box | Mastering Number |
| 8 | - solve problems with addition and subtraction <br> - subtract ones from a 2 -digit number <br> - add and subtract a 2 -digit number and tens <br> WALT subtract by bridging through 10 <br> WALT subtract from a 10 s number <br> WALT subtract a I-digit from a 2 -digit number WALT find ten more or ten less than a 2-digit number <br> WALT add and subtract 10 s numbers | - Subtract across 10 <br> - Subtract from a 10 <br> - Subtract a I-digit number from a 2digit number (across a 10) <br> - 10 more, 10 less <br> - Add and subtract 10 s | Base-IO, ten-frame, counters, Rekenrek, printed number line, part-whole model, 100 square, number track <br> Digit, numeral, twenty-one, twenty-two (and so on up to), ninety-nine, one hundred, place value, step counting, <br> > as 'greater than', < as 'less than', partition, place holder, place value, estimate, commutative | Another and another <br> $63-8=55$ Bridging through 60 , which number would we partition? Can you find some other calculations where this is also true? <br> What else do you know? <br> If you know this: $87=95-8$ <br> what other facts do you know? | Mastering Number |

## Autumn 2: The Great Fire of London

| Week | Unit National Curriculum objectives <br> Possible lesson objectives | White Rose Maths (WRM) <br> 'small steps' | Models and images representing number Key vocabulary | Reasoning (in addition to WRM questions) | Fluency |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I | Number <br> Calculation: Addition and subtraction (2) |  |  |  |  |
|  | - solve problems with addition and subtraction <br> - add and subtract two 2-digit numbers <br> WALT add 2-digit numbers, not crossing a 10 s number <br> WALT add 2-digit numbers, crossing a 10 WALT subtract 2 -digit numbers, not crossing a 10 s number <br> WALT subtract 2 -digit numbers, crossing a 10 | - Add two 2-digit numbers (not across a 10) <br> - Add two 2-digit numbers (across a 10) <br> - Subtract two 2-digit numbers (not across a 10) <br> - Subtract two 2-digit numbers (across a 10) | Base-I0, bar model, part-whole model <br> Digit, numeral, twenty-one, twenty-two (and so on up to), ninety-nine, one hundred, place value, step counting, <br> > as 'greater than', < as 'less than', partition, place holder, place value, estimate, commutative | Convince me <br> What digits could go in the boxes? $\qquad$ - 2 $\qquad$ $=46$ <br> Try to find all of the possible answers. How do you know you have got them all? <br> NRICH Dicey Addition NRICH Arranging Additions and Sorting Subtractions | Mastering Number |
| 2 | - solve problems with addition and subtraction <br> - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot <br> - recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems <br> WAP adding and subtracting 2-digit numbers WALT use < and > to compare number sentences WALT understand commutativity WALT use the inverse to solve missing number problems | - Mixed addition and subtraction <br> - Compare number sentences <br> - Missing number problems | Base-I0, part-whole model <br> Introduce Empty number line <br> Digit, numeral, twenty-one, twenty-two (and so on up to), ninety-nine, one hundred, place value, step counting, <br> > as 'greater than', < as 'less than', partition, place holder, place value, estimate, commutative | Making an estimate <br> Which of these number sentences have the answer that is between 50 and 60? $\begin{aligned} & 74-13 \\ & 55+17 \\ & 87-34 \end{aligned}$ <br> Explain it <br> Is addition commutative? Subtraction? How do you know? <br> What's the same, what's different between different magic squares <br> NRICH Doing and Undoing <br> NRICH Number Round Up <br> NRICH Jumping Squares <br> NRICH Birthday Cakes | Mastering Number |
| 3 | Geometry |  |  |  |  |


|  | Properties of shape |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | - identify and describe the properties of 2-D shapes, including the number of sides <br> - identify and describe the properties of 3-D shapes <br> WALT recognise, find and name common 2-D shapes <br> WALT recognise, find and name common 3-D shapes <br> WALT count sides on 2-D shapes <br> WALT count vertices on 2-D shapes <br> WALT make and draw different 2-D shapes | - Recognise 2-D and 3-D shapes <br> - Count sides on 2-D shapes <br> - Count vertices on 2D shapes <br> - Draw 2-D shapes | Shapes on geoboards and dotty paper <br> Vertices, edges, Faces <br> Not statutory, but desirable: quadrilateral, polygon, prism, cone, vertical, horizontal | Always, sometimes, never <br> Is it always, sometimes or never true that when you fold a square in half you get a rectangle? <br> NRICH Let's Investigate Triangles (online or adapt for geoboards) <br> NRICH Complete the Square <br> NRICH Shapely Lines <br> NRICH Chain of Changes | Mastering Number |
| 4 | - identify and describe the properties of 2-D shapes, including line symmetry in a vertical line <br> - compare and sort common 2-D shapes and everyday objects <br> WALT understand lines of symmetry <br> WALT identify lines of symmetry in 2-D shapes WALT use lines of symmetry to complete shapes WALT sort 2-D shapes according to their properties | - Lines of symmetry on shapes <br> - Use lines of symmetry to complete 2-D shapes <br> - Sort 2-D shapes | Venn diagrams <br> Vertices, edges, <br> Faces, symmetry <br> Not statutory, but desirable: quadrilateral, polygon, prism, cone, vertical, horizontal | NRICH Colouring Triangles NRICH Triangle or No Triangle? <br> NRICH Matching Triangles NRICH Repeating Patterns NRICH Circles, Circles | Mastering Number |
| 5 | - identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces <br> - identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] <br> - compare and sort common 3-D shapes and everyday objects <br> WALT identify and count the faces on 3-D shapes WALT identify and count the vertices on 3-D shapes <br> WALT identify and count the edges on 3-D shapes WALT sort 3-D shapes according to their properties <br> WALT make repeating patterns with 2 - and 3-D shapes | - Count faces on 3-D shapes <br> - Count vertices on 3D shapes <br> - Count edges on 3-D shapes <br> - Sort 3-D shapes <br> - Make patterns with 2 - and 3 -D shapes | Venn diagrams <br> Vertices, edges, faces, symmetry <br> Not statutory, but desirable: quadrilateral, polygon, prism, cone, vertical, horizontal | What's the same, what's different? Pick up and look at these 3-D shapes. <br> Do they all have straight edges and flat faces? <br> What is the same and what is different about these shapes? <br> NRICH Skeleton Shapes <br> NRICH Shadow Play <br> NRICH Triangle or No Triangle? Adapt for 3-D shapes (e.g. which statements could you change and this would still be a [cube]?) <br> NRICH Cubes Cut into Four Pieces | Mastering Number |

$\left.\begin{array}{|c|l|l|l|l|}\hline 6 \text { and } & \begin{array}{l}\text { Warm-Down Weeks } \\ 7 \\ \text { Consolidation of previous learning }\end{array} & & & \\ & & & & \\ \text { Nuct } \\ \text { families } \\ \text { Nacts: } \\ \text { bonds to } \\ 10 / 20 \\ \text { and } \\ \text { matching - } \\ \text { facts }\end{array}\right]$

Spring I: On the Move

| Week | Unit National Curriculum <br> objectives <br> Possible lesson objectives | White Rose Maths <br> (WRM) 'small steps' | Models and images representing number Key vocabulary | Reasoning (in addition to WRM questions) | Fluency |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Measurement Money |  |  |  |  |
|  | - recognise and use symbols for pounds ( $£$ ) and pence (p); combine amounts to make a particular value <br> - Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change <br> WALT recognise coins and notes <br> WALT count pence <br> WALT count money <br> WALT select money to make an amount <br> WALT make an amount in different ways | - Count money pence <br> - Count money pounds - notes and coins <br> - Count money pounds and pence <br> - Choose notes and coins <br> - Make the same amount | Coins and notes, bar model, part-whole model, base-IO <br> Price, cost, amount, change | Possibilities <br> How many different ways can you make 63p using only 20p, IOp and Ip coins? <br> The answer is... <br> 55 p; what's the question? <br> NRICH Five Coins | Mastering Number |
| 2 | - recognise and use symbols for pounds ( $£$ ) and pence ( P ); combine amounts to make a particular value <br> - solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change <br> WALT compare amounts of money <br> WALT add amounts of money <br> WALT find the difference between amounts of money <br> WALT calculate change <br> WALT solve two-step money problems | - Compare amounts of money <br> - Calculate with money <br> - Make a pound <br> - Find change <br> - Two-step problems | Coins and notes, bar model, empty numberline, column layout <br> Price, cost, amount, change | Working backwards <br> I bought a pencil for 40 p and a rubber for 25 p. I have $£ 1.35$ left. How much money did I have to start with? <br> Making links <br> I have 30p in my pocket in 5 p coins. How many coins do I have? <br> NRICH The Puzzling Sweet Shop NRICH Fruity Pairs | Mastering Number |
| 3 | Number <br> Calculation: Multiplication and division (I) |  |  |  |  |
|  | - calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication ( x ) and equals ( $=$ ) signs <br> - solve problems involving multiplication, using materials, repeated addition, mental methods, and multiplication facts, including problems in contexts. | - Recognise equal groups <br> - Make equal groups <br> - Add equal groups | Cubes, coins, base-IO, Numicon <br> multiple(s), dividend, division, quotient, calculate, multiplication, division, | True or False <br> All numbers can be divided into equal groups. Explain your answer. <br> Spot the Mistake $\begin{aligned} & 2 \times 4=2+2+2+2 \\ & 5 \times 3=5+5+5 \\ & 10 \times 5=5+5+5+5+5 \end{aligned}$ | Mastering Number |


|  | WALT tell if a group is equal or unequal <br> WALT make equal groups <br> WALT add equal groups <br> WALT add equal groups using a numberline <br> WALT write multiplication equations | - Introduce the multiplication symbol | dividend, array, commutative, inverse <br> Not statutory but desirable: multiplicand, multiplier, product | NRICH Lots of Lollies |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | - calculate mathematical statements for multiplication [.] and write them using the $\times$ and $=$ signs <br> WALT turn pictures into multiplication equations WALT make arrays <br> WALT show equations as arrays <br> WALT reason about arrays <br> WALT double numbers | - Multiplication sentences from pictures <br> - Use arrays <br> - Make equal groups - grouping <br> - Make equal groups - sharing | Counters, arrays, ten frames, Numicon, cubes Introduce Circles for grouping <br> multiple(s), dividend, division, quotient, calculate, multiplication, division, dividend, array, commutative, inverse <br> Not statutory but desirable: multiplicand, multiplier, product | Find all the Possibilities <br> How many different arrays can you make with 12 counters? 20 counters? Which number of counters under 30 has the greatest number of different arrays? <br> NRICH Doing and Undoing <br> NRICH Magic Plant <br> NRICH The Amazing Splitting Plant | Mastering Number |
| 5 | - recall and use multiplication facts for the 2 and 5 multiplication tables <br> - calculate mathematical statements for multiplication [.] and write them using the $\times$ and $=$ signs <br> - show that multiplication of two numbers can be done in any order (commutative) <br> - solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts. <br> WAL the two times table <br> WALT show the two times table on a numberline <br> WAL the five times table <br> WALT show the five times table on a numberline <br> WALT multiplication obeys the commutative law | - Two times table <br> - Divide by 2 <br> - Doubling and halving <br> - Odd and even numbers | Number tracks, coins, Numicon, hands, printed or empty numberlines, bar model <br> multiple(s), dividend, division, quotient, calculate, multiplication, division, dividend, array, commutative, inverse <br> Not statutory but desirable: multiplicand, multiplier, product | NRICH Double or Halve? NRICH Pairs of Legs | Mastering Number |
| 6 | - recall and use multiplication facts for the 10 multiplication table <br> - calculate mathematical statements for multiplication [.] and write them using the $\times$ and $=$ signs | - The 10 timestable <br> - Divide by 10 <br> - Five times table <br> - Divide by 5 | Base-I0 <br> multiple(s), dividend, division, quotient, calculate, multiplication, division, | Making Links / Prove It <br> Use a numberline to show that $5 \times 4=4 \times 5$ <br> NRICH Number Detective (ext. Which clues are not needed to find the answer?) <br> Missing Number <br> $10=5 \times \ldots$ What number could be written in the box? | Mastering Number |

- solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts.

WAL the ten times table
WALT show the ten times table on a numberline

## True or false?

When you count up in tens starting at 5 there will always be 5 units.

## NRICH Clapping Times

 NRICH Tables Teaser
## Spring 2: The Circus

| Week | Unit National Curriculum <br> objectives <br> Possible lesson objectives | White Rose Maths (WRM) 'small steps' | Models and images representing number Key vocabulary | Reasoning (in addition to WRM questions) | Fluency |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number <br> Calculation: Multiplication and division (I) |  |  |  |  |
| 1 | - recall and use multiplication facts for the 2 and 5 multiplication tables <br> - calculate mathematical statements for multiplication [.] and write them using the $\times$ and $=$ signs <br> - show that multiplication of two numbers can be done in any order (commutative) <br> - solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts. <br> WAL the two times table WALT show the two times table on a numberline WALT multiplication obeys the commutative law | - Two times table <br> - Divide by 2 <br> - Doubling and halving | Number tracks, coins, Numicon, hands, printed or empty numberlines, bar model, , base 10 <br> multiple(s), dividend, division, quotient, calculate, multiplication, division, dividend, array, commutative, inverse <br> Not statutory but desirable: multiplicand, multiplier, product | NRICH Double or Halve? NRICH Pairs of Legs | Mastering <br> Number |
| 2 | - recall and use multiplication facts for the 10 multiplication table <br> - calculate mathematical statements for multiplication [.] and write them using the $\times$ and $=$ signs <br> - solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts. <br> WAL the ten times table <br> WALT show the ten times table on a numberline | - Odd and even numbers <br> - The 10 times-table <br> - Divide by 10 | Number tracks, coins, Numicon, hands, printed or empty numberlines, bar model, , base 10 <br> multiple(s), dividend, division, quotient, calculate, multiplication, division, dividend, array, commutative, inverse <br> Not statutory but desirable: | True or false? <br> When you count up in tens starting at 5 there will always be 5 units. | Mastering <br> Number |


|  |  |  | multiplicand, multiplier, product |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | - recall and use multiplication facts for the 10 multiplication table <br> - calculate mathematical statements for multiplication [.] and write them using the $\times$ and $=$ signs <br> - solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts. <br> - WAL the five times table <br> - WALT divide by 5 <br> - WAL the 5 and 10 times tables | - Five times table <br> - Divide by 5 <br> - The 5 and 10 timestables | Number tracks, coins, Numicon, hands, printed or empty numberlines, bar model, base IO <br> multiple(s), dividend, division, quotient, calculate, multiplication, division, dividend, array, commutative, inverse <br> Not statutory but desirable: multiplicand, multiplier, product | Making Links / Prove It <br> Use a numberline to show that $5 \times 4=4 \times 5$ <br> Missing Number <br> $10=5 \times \ldots$ What number could be written in the box? <br> NRICH Number Detective (ext. Which clues are not needed to find the answer?) <br> NRICH Tables Teaser <br> NRICH Clapping Times | Mastering Number |
| 4 | Measurement <br> Length and height (I) |  |  |  |  |
|  | - choose and use appropriate standard units to estimate and measure length/height in any direction ( $\mathrm{m} / \mathrm{cm}$ using rulers <br> - compare and order lengths and record the results using $>$, < and = <br> WAP using the language of length and measure using nonstandard units <br> WALT use a ruler to measure in standard units WALT compare lengths and put them in order of size WALT calculate with length and height | - Measure in cm <br> - Measure in $m$ <br> - Compare lengths and heights <br> - Order lengths and heights <br> - Four operations with lengths and heights | Cubes, ruler, <br> Cuisenaire rods, bar model <br> Height, width, metre, centimeter, millimetre | Application (practical) <br> Draw two lines whose lengths differ by 4 cm . <br> Top tips <br> Put these measurements in order starting with the smallest. <br> 3 m <br> 100 cm <br> 10 cm <br> 1 m <br> Explain your thinking <br> NRICH Little Man | Mastering Number |
| 5 | Measurement <br> Mass, capacity and temperature (1) |  |  |  |  |
|  | - choose and use appropriate standard units to estimate and measure mass ( $\mathrm{kg} / \mathrm{g}$ ); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres/ml) to the nearest appropriate unit, using scales, thermometers and measuring vessels | - Compare mass <br> - Measure mass in grams <br> - Measure mass in kilograms <br> - Four operations with mass | Cubes, scales (on weighing scales, measuring jugs or cylinders, thermometers) | Top tips <br> Put these measurements in order starting with the smallest. <br> 750 grams <br> 1/2 kilogram <br> I kilogram <br> Explain your thinking | Mastering Number |


|  | - compare and order mass, volume/capacity and record the results using >, < and = <br> WALT measure mass using standard and non-standard units <br> WALT measure mass by reading scales <br> WALT measure capacity and volume using standard and non-standard units <br> WALT calculate with mass and volume | - Compare volume and capacity | Grams, kilograms, litre, millilitre | NRICH Order, Order! |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | - Choose and use appropriate standard units to estimate and measure length $/$ height in any direction ( $\mathrm{m} / \mathrm{cm}$ ); mass $(\mathrm{kg} / \mathrm{g})$; temperature ( ${ }^{\circ} \mathrm{C}$ ); capacity (litres $/ \mathrm{ml}$ ) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels <br> - Compare and order lengths, mass, volume/capacity and record the results using >, < and = <br> WALT measure in millilitres <br> WALT measure in litres <br> WALT use the four operations with volume and capacity WALT read a thermometer | - Measure in millilitres <br> - Measure in litres <br> - Four operations with volume and capacity <br> - Temperature | Cubes, scales (on weighing scales, measuring jugs or cylinders, rulers, metre sticks, thermometers) <br> litre, millilitre | Position the symbols <br> Place the correct symbol between the measurements >or $<$ 36 cm <br> 63 cm $130 \mathrm{ml} \quad 103 \mathrm{ml}$ <br> Explain your thinking <br> Application <br> (Practical) <br> Draw two lines whose <br> lengths differ by 4 cm . | Mastering Number |


| Week | Unit National Curriculum <br> objectives <br> Possible lesson objectives | White Rose Maths (WRM) 'small steps' | Models and images representing number Key vocabulary | Reasoning (in addition to WRM questions) | Fluency |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I | Number <br> Fractions |  |  |  |  |
|  | - recognise, find, name and write fractions $1 / 4$ and $1 / 2$ of a length, shape, set of objects or quantity <br> - write simple fractions for example, $1 / 2$ of $6=3$ <br> WALT split a whole into equal parts WALT recognise one half of a shape or group of objects WALT find half of a group or a number WALT recognise one quarter of a shape or group of objects WALT find a quarter of a group or a number | - Introduction to parts and whole <br> - Equal and unequal parts <br> - Recognise a half <br> - Find a half <br> - Recognise a quarter | Blank grid, IO-frame, cubes, counters, counting objects, bar model <br> Third, thirds, sharing, grouping, two quarters, equivalent, <br> Not statutory but desired - one and a quarter etc, half as much, twice as much, numerator, denominator, fraction barl vinculum | Odd one out <br> $1 / 2$ of $8,1 / 4$ of $12,1 / 4$ of 16 <br> Always, sometimes, never <br> A half is larger than a quarter <br> True or false? <br> Half of $20 \mathrm{~cm}=5 \mathrm{~cm}$ <br> Half of $5 \mathrm{~cm}=10 \mathrm{~cm}$ <br> What do you notice? <br> Find $1 / 2$ of 8 . <br> Find $2 / 4$ of 8 | Mastering <br> Number |
| 2 | - recognise, find, name and write fraction $1 / 3$ of a length, shape, set of objects or quantity <br> - write simple fractions for example, $1 / 2$ of $6=3$ <br> WALT recognise one third of a shape or group of objects WALT find a third of a group or a number WALT identify unit fractions WALT use the numerator to write non-unit fractions WAL about the relationship between unit and non-unit fractions | - Find a quarter <br> - Recognise a third <br> - Find a third <br> - Find the whole | Cubes, counting objects, bar model, blank grid <br> Third, thirds, sharing, grouping, two quarters, equivalent, <br> Not statutory but desired - one and a quarter etc, half as much, twice as much, numerator, denominator, fraction barl vinculum | What do you notice? <br> $1 / 4$ of $4=1$ <br> $1 / 4$ of $8=2$ <br> $1 / 4$ of $12=3$ <br> Continue the pattern <br> What do you notice? | Mastering Number |
| 3 | - recognise, find, name and write fraction $3 / 4$ of a length, shape, set of objects or quantity <br> - recognise the equivalence of $2 / 4$ and $1 / 2$ <br> WALT understand equivalence <br> WAL the equivalence of one half and two quarters | - Unit fractions <br> - Non-unit fractions <br> - Recognise three quarters <br> - Find three quarters | Counters, Cuisenaire rods, Numicon, cubes, bar model, printed numberline, counting stick | Ordering <br> Put these fractions in the correct order, starting with the smallest. $\begin{array}{lll} 1 / 2 & 1 / 4 & 1 / 3 \end{array}$ <br> How do you know? <br> Do, then explain | Mastering Number |


|  | WALT identify three quarters of a shape WALT find three quarters of a group or a number WALT use fractions as counting numbers | - Count in fractions up to a whole | Third, thirds, sharing, grouping, two quarters, equivalent, <br> Not statutory but desired - one and a quarter etc, half as much, twice as much, numerator, denominator, fraction bar/ vinculum | On this shape, colour in a unit fraction, then colour in a non-unit fraction. Explain the difference between a unit and non-unit fraction. <br> True or false? $\begin{aligned} & 3 / 4 \text { of } 15 \mathrm{~cm}=12 \mathrm{~cm} \\ & 3 / 4 \text { of } 12 \mathrm{~cm}=9 \mathrm{~cm} \end{aligned}$ <br> Spot the mistake $7,71 / 2,8,9,10$ $8 \text { ½, 8, 7, } 6 \text { ½, }$ <br> $\ldots$ and correct it <br> What comes next? $\begin{aligned} & 51 / 2,61 / 2,71 / 2, \ldots ., \ldots \\ & 91 / 2,9,81 / 2, \ldots \ldots, \ldots . \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | Measurement Time |  |  |  |  |
|  | - tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times <br> - know the number of minutes in an hour <br> WAP telling the time to the hour and the half-hour WAP showing o'clock and half past times WALT reading clocks that show quarter past and quarter to WALT read clocks that show the time in minutes past the hour <br> WALT read clocks that show the time in minutes to the hour | - O’clock and half past <br> - Quarter past and quarter to <br> - Telling time to the hour <br> - Tell the time to 5 minutes | Clocks <br> Analogue, five, ten, $1 / 4$ past/to, clockwise, anticlockwise | Always, sometimes, never <br> When the hand is pointing at the 6 , it 's half past Do, then explain <br> Show 20 to 3 on a clock face. How did you know where the hands should be pointing? <br> What comes next? <br> 10 past 6,20 past 6 , half past $6 \ldots$ <br> 25 to 8 , quarter to 8,5 to 8 <br> NRICH What is the Time? | Mastering <br> Number |
| 5 | - compare and sequence intervals of time <br> - know the number of hours in a day <br> WAP choosing and measuring with units of time WAL about a.m. and p.m. times WALT use times to calculate duration WALT compare durations | - Minutes in an hour <br> - Hours in a day | Bar model, clocks <br> Analogue, five, ten, $1 / 4$ past/to, clockwise, anticlockwise | Working backwards <br> Break lasts 15 minutes and finishes at [...] Draw hands on the clock face to show when it started. <br> The answer is .... <br> 3 hours. What is the question? <br> What do you notice? <br> I hour = 60 minutes <br> $1 / 2$ hour $=30$ minutes <br> $1 / 4$ hour $=15$ minutes <br> Write down some more time facts like these <br> NRICH Matching Time <br> NRICH Stop the Clock (online) | Mastering Number |


|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Statistics |  |  |  |  |
|  | - interpret and construct simple pictograms, tally charts and simple tables <br> - ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity. <br> WALT collect data using a tally chart <br> WALT read a pictogram <br> WALT use a pictogram to display data <br> WALT interpret a pictogram | - Make tally charts <br> - Tables <br> - Block diagrams <br> - Draw pictograms (I-I) <br> - Interpret pictograms (1-I) | Pictogram, tally chart, block diagram, table, data, category(ies) | Spot the mistake <br> Ask a questions that can't be answered from the pictogram. <br> What's the same, what's different? Tally charts vs. pictograms <br> NRICH Sort the Street | Mastering Number |
|  | - interpret and construct simple pictograms, block diagrams and simple tables <br> - ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity <br> - ask and answer questions about totalling and comparing categorical data <br> WALT display data using different scales <br> WALT read pictograms using different scales <br> WALT interpret a block diagram <br> WALT draw a block diagram <br> WALT use a block diagram to answer questions about data | - Draw pictograms (2, 5 and I0) <br> - Interpret pictograms (2, 5 and 10 ) <br> - Block diagrams | Cubes <br> Pictogram, tally chart, block diagram, table, data, category(ies) | What's the same, what's different? Pictograms with different scales, pictograms vs. block diagrams Convince me... <br> ...that a pictogram is better than a block diagram (or vice versa) <br> NRICH Ladybird Count <br> NRICH Sticky Data | Mastering Number |


| Week | Unit National Curriculum objectives <br> Possible lesson objectives | White Rose Maths (WRM) 'small steps' | Models and images representing number Key vocabulary | Reasoning (in addition to WRM questions) | Fluency |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Geometry <br> Position and direction (2) |  |  |  |  |
|  | - use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise) <br> WALT give and receive directions WALT use a map with directions WALT use our knowledge of turns to programme an object | - Describe movement and turns | NB Time may also be used this week to go over any gaps still remaining in end-of-Key Stage criteria) <br> Straight, curved, rotate, rotation, angle <br> Not statutory but desired: right angle | Working backwards <br> If I face forwards and turn three quarter turns clockwise then a quarter turn anti-clockwise describe my finishing position? <br> If I turn a half-turn clockwise, then a three-quarter turn anti-clockwise and end up facing backwards, describe my starting position. <br> Odd one out <br> A quarter turn anti-clockwise and half turn clockwise A half turn clockwise and a quarter-turn clockwise A whole turn and a quarter turn clockwise A half turn anti-clockwise and a quarter turn anticlockwise <br> Explain your answer. | Mastering Number |
| 2 | Spend time revisiting areas that are a class weakness in the build-up to optional SATs paper. When finished remaining units, focus in on number and fractions and areas that as a class they found more challenging on their optional SATs papers in prep for next year. |  |  |  |  |
|  |  | - |  |  |  |
| 3 |  |  |  |  |  |
| 4 |  |  |  |  |  |
|  |  | - |  |  |  |
| $\begin{gathered} 5, \\ 6 \\ \text { and } \\ 7 \end{gathered}$ | Condolidation |  |  |  |  |

