Highgate Primary Year 5 Maths Curriculum

WALT: We Are Learning To WAP: We Are Practising

Autumn 2: What Price Progress?

Week	Unit	National Curriculum objectives Possible lesson objectives	White Rose Maths (WRM) 'small steps'	Models and images representing number Key vocabulary	Reasoning (in addition to WRM questions)	Fluency		
I	Statistics (2)							
	tables, including WALT read and WALT read and WALT construct WALT read and	interpret tables interpret a two-way table a two-way table interpret a timetable etable to answer problems with	 Read and interpret tables Two-way tables Timetables 	Tables, two-way tables, timetables	Is this true or false? Convince me. Make up your own 'true/false' statement about a journey using a timetable.	Bonds to 1000 and 10 000		
2	identify multiple factor pairs of a two numbers know and use the prime factors a WALT identify at WALT identify at WALT find community prime factors.	nd use fators non factors	MultiplesFactorsCommon factorsPrime numbers	Array (of counters)	NRICH Sweets in a Box NRICH Abundant Numbers NRICH Flashing Lights NRICH Multiplication Squares NRICH Factors and Multiples Game NRICH Factor Track	Mental addition		
3	and recall prim • multiply and div upon known fa • multiply and div	ner a number up to 100 is prime e numbers up to 19 vide numbers mentally drawing cts vide whole numbers and those hals by 10, 100 and 1000	 Square numbers Cube numbers Multiply by 10 Multiply by 100 Multiply by 10, 100 and 1000 	Array (of counters), cubes, bar model, place value grid, base-10, part- whole model	NRICH Two Primes Make One Square NRICH One Wasn't Square NRICH Cycling Squares NRICH Square Subtraction or NRICH Odd Squares	Mental subtraction		

V	WALT calculate square numbers WALT calculate cube numbers WAP multiplying by 10 WAP multiplying by 100 WALT multiply by 1000							
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 multiply and divide numbers mentally drawing upon known facts multiply and divide whole numbers and those involving decimals by 10, 100 and 1000 WAP dividing by 10 WAP dividing by 100 WALT divide by 1000 WALT use related facts to multiply and divide 	 Divide by 10 Divide by 100 Divide by 10, 100 and 1000 Multiples of 10, 100 and 1000 	Place value counters, base-10, place value grid, counters	Making links 7 x 8 = 56 How can you use this fact to solve these calculations? 0.7 x 0.8 = 5.6 ÷ 8 = Always, Sometimes, Never When you divide by 1000, you end up with a decimal number Prove it Dividing by 1000 is the same as dividing by 10, three times.	Recall of primes, squares and cubes			
	Measurement Perimeter and Area							
• V	 measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres WALT use a ruler to accurately measure perimeter WALT to use a grid to find perimeter WALT find the perimeter of a rectangle WALT find the perimeter of a rectilinear shape WALT use a formula to calculate perimeter 	 Measuring perimeter Perimeter on a grid (revision) Perimeter of rectangles (revision) Perimeter of rectilinear shapes (revision) Calculating perimeter 	Ruler	Other possibilities A rectangular field has a perimeter between 14 and 20 metres. What could its dimensions be? Testing conditions Shape A is a rectangle that is 4m long and 3m wide. Shape B is a square with sides 3m. The rectangles and squares are put together side by side to make a path which has perimeter between 20 and 30 m. For example Can you draw some other arrangements where the perimeter is between 20 and 30 metres?	Times table revision			

				what do you notice about the perimeter of the new shape compared to the perimeter of the starting squares? Explain why this happens. Experiment with joining other rectangles together – does the same thing happen?	
6	 calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm2) and square metres (m2) and estimate the area of irregular shapes WALT find area by counting squares WALT use a formula to calculate the area of a rectangle WALT relate area to arrays and multiplication [not WRM] WALT find the area of compound rectilinear shapes WALT estimate the area of irregular shapes 	 Counting squares Area of rectangles (revision) Area of compound shapes Area of irregular shapes 	Arrays	Top Tips Put these amounts in order starting with the largest. 130000cm2 1.2 m2 13 m2 Explain your thinking What's the Same, What's Different? A 4 x 5 array and the area of a rectangle with sides of 4 cm and 5 cm. NRICH Numerically Equal → NRICH Can They Be Equal NRICH Ribbon Squares NRICH Through the Window	Division within times tables